本发明公开了一种基于深度学习的人脸多区域融合表情识别方法,包括下述步骤:用检测模型检测出人脸位置;用关键点模型得到人脸关键点坐标;先根据眼睛部分关键点做眼睛对齐;然后根据整体人脸关键点坐标做人脸对齐,并通过仿射变换裁剪人脸区域;按照一定的比例裁剪图像的眼睛和嘴巴区域。卷积神经网络分为一个主干网络和两个支干网络,在最后一层卷积层进行特征融合,最后通过分类器得到表情分类结果。本发明利用先验信息,除整个人脸之外还将眼睛和嘴巴区域作为网络的输入,通过模型融合使网络既能学习到人脸表情的整体语义特征也能学习到局部区域特征,简化了人脸表情识别的难度,减少外部噪声,有鲁棒性强,准确率高,算法复杂度低等优点。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号