本发明公开了一种混合高斯建模改进的协同过滤推荐方法,包括步骤:1)对用户?物品评分矩阵的各个物品的评分分布建立混合高斯模型;2)利用EM算法计算出每个物品评分分布的混合高斯模型参数;3)根据每个物品评分的混合高斯模型计算每个用户的惊异度向量;4)根据用户的惊异度向量计算用户之间的相似度;5)根据用户之间的相似度进行协同过滤推荐。本发明通过对物品评分分布进行混合高斯建模,计算出所有用户的惊异度向量,在此基础上计算用户的相似度,最后进行协同过滤推荐,缓解数据的稀疏性问题,有效的提高推荐效果。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号