本发明公开了基于RBF网络的Q学习框架仿人机器人稳定控制方法,该方法包括:提出基于RBF网络的Q学习框架(RBF?Q Learning),该框架解决Q学习过程中状态空间连续化和行为空间连续化的问题;提出基于RBF网络的Q学习在线动作调整稳定控制算法,产生支撑腿的髋关节、膝关节以及踝关节轨迹,并通过计算出其他各关节角度控制仿人机器人稳定行走;最后通过在本实验室设计的The Vitruvian Man仿人机器人平台上验证RBF?Q Learning框架方法的可行性和有效性。本发明能够通过在线学习过程中产生仿人机器人稳定行走的步态。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号